Efektywny i tani adsorbent zdolny oczyszczać powietrze z różnych toksycznych związków opracowali naukowcy pod kierownictwem prof. Juana Carlosa Colmenaresa z Instytutu Chemii Fizycznej PAN. Badanie przeprowadzono na środkach bojowych, ale materiał można by używać w uniformach ochronnych, a nawet do oczyszczania wody i gleby.
Materiał opracowany przez naukowców w laboratorium nie tylko adsorbuje z powietrza toksyczne opary, lecz dzięki właściwościom fotokatalitycznym również rozbija je na mniej toksyczne związki. Składa się on z dwóch stosunkowo tanich i łatwych do pozyskania substancji: dwutlenku tytanu i tlenku grafitu.
Chcieliśmy, żeby nasz wynalazek był powszechnie dostępny, a do tego przyjazny środowisku.
wyjaśnia prof. Juan Carlos Colmenares
Innowacją było w tym przypadku zastosowanie ultradźwięków – informuje Instytut Chemii Fizycznej PAN. To one zmusiły dwa składniki – organiczny i nieorganiczny – do współpracy. Tlenek grafitu wyłapuje cząstki toksyn, a dwutlenek tytanu unieszkodliwia je dzięki fotokatalizie. Dodatkowo zastosowanie ultradźwięków znacząco zwiększa aktywną powierzchnię nowego materiału i wprowadza do niej defekty, co sprawia, że skuteczność w unieszkodliwianiu toksyn z powietrza znamiennie rośnie.
Dzięki falom ultradźwiękowym udało nam się uzyskać świetne rozproszenie cząstek, a warstwa tlenku grafitu szczelnie otula powierzchnię dwutlenku tytanu.
opowiada prof. Colmenares
Pierwotnie materiał miał być wykorzystywany jako dodatkowa warstwa w maskach przeciwgazowych dla żołnierzy. Można go także wbudować w tekstylia tworząc mundury chroniące noszących je żołnierzy przed gazowymi toksynami na polu walki. Sam wychwyt zachodzi równie dobrze przy świetle jak i po ciemku, ale unieszkodliwianie gazów bojowych wymaga oświetlenia. Dzień bitwy musiałby zatem być słoneczny albo mundur musiałby mieć dodatkowe, LED-owe oświetlenie uaktywniające fotokatalizę.
Choć jednak badanie przeprowadzono na środkach bojowych, potencjalne zastosowania wynalazku mogą być o wiele szersze i bardziej pokojowe.
Można by na przykład szyć uniformy chroniące pracowników fabryk przed toksycznymi wyziewami.
Na jeden kombinezon wystarczyłyby miligramowe ilości, o ile byłyby one równomiernie rozproszone w materiale.
dodaje prof. Colmenares
Naukowcy musieliby też znaleźć sposób na trwalsze zespolenie swojego nanomateriału z nośnikiem, bo ubrania trzeba prać, a wiadomo, że niemal 35% mikroplastiku w środowisku pochodzi z pranych syntetyków.
Nie chcemy, żeby nasz wynalazek skończył w rzekach i morzach. Chcemy, żeby był ekologiczny na każdym etapie, nie tylko wtedy, kiedy rozprawia się z toksynami.
zaznacza profesor
Na szczęście współautorzy niniejszej pracy, dr Dimitrios A. Giannakoudakis i inni członkowie zespołu już wcześniej wykazali, że dzięki sonifikacji, czyli działaniu ultradźwięków, substancję aktywną można w łatwy sposób trwale łączyć zarówno z bawełną jak i ze sztucznym włóknem.
Przy odpowiedniej modyfikacji technologię opisaną w Chemical Engineering Journal można by wykorzystać nie tylko do oczyszczania powietrza, ale także wody i gleby.
Jeszcze nie badaliśmy tych możliwości, ale powodzenie zależy głównie od tego, czy będziemy w stanie bezpiecznie osadzać nasz nanomateriał na potencjalnych nośnikach. W końcu oczyszczając wodę np. z fenolu nie chcielibyśmy wzbogacić jej w nasze tlenki, choć w teorii ani TiO2, ani tlenek grafitu nie są toksyczne dla ludzi.
wyjaśnia naukowiec
Gdyby udało się usunąć tę przeszkodę, możliwości stałyby się praktycznie nieograniczone. Nowy materiał mógłby oczyszczać ścieki w zakładach papierniczych i koksowniach, a nawet neutralizować zalegające na dnie Bałtyku chemikalia z II Wojny Światowej.
Na razie celujemy w oczyszczalnie ścieków. Fotokataliza i nanokompozyty mogą działać tam, gdzie dla mikrobów otoczenie jest zbyt toksyczne.
opowiada profesor
Największym wyzwaniem byłaby fotokataliza gleby, ale przy odpowiednim mieszaniu, napowietrzaniu, naświetlaniu i właściwym fotokatalizatorze, opracowanym np. tylko do rozkładania herbicydów albo pestycydów, nawet i to można sobie z łatwością wyobrazić.
Badanie było prowadzone przy wsparciu projektu OPUS-13 oraz Miniatura 2 Narodowego Centrum Nauki.
źródło: naukawpolsce.pap.pl